蒙氏数学多边形教案6篇

时间:
Monody
分享
下载本文

教案能够使教师培养学生的学习兴趣和自主学习能力,激发他们的学习动力,教案助教师保持教学的连续性和稳定性,提供有序的学习体验,以下是好文笔小编精心为您推荐的蒙氏数学多边形教案6篇,供大家参考。

蒙氏数学多边形教案6篇

蒙氏数学多边形教案篇1

活动目标:

1、通过动手操作,激发幼儿学习图形的兴趣。

2、观察和比较正五边形、正八边形和正十边形,感知其主要特征。

3、乐于探索、交流与分享。

4、促进幼儿的创新思维与动作协调发展。

活动准备:

1、教具准备:挂图“美丽的窗户”

2、学具准备::“多边形”彩色小珠子、彩色笔若干。用彩纸剪成五边形至十边形卡片(做成伞面)。正五边形、正六边形、正八边形和正十边形纸样。

活动过程:

1、创设情景:小动物们的房屋装修好了,只乘下窗户没有刷上彩色油漆,我们去帮帮他们吧。

2、出示挂图,引导幼儿观察。看看小动物们家里的窗户一样吗,分别是什么形状的?

3、给每个窗户涂上不同的颜色,它们分别是正五边形、正六边形、正八边形和正十边形。

4、讨论说说在生活动中见过哪些边形的物体如密蜂的蜂房是正六边形的,伞面是八边表的。

5、操作活动。

幼儿拿学具“多边形”,触摸多边形,感知多边形的基本特征。与多边形卡对应摆放,加深地多边形的认识。

6、作业:

(1)、描一描是和边形,并将数字写在图形中间,再把相同的图形连在一起。

(2)、小密蜂迷路了,让我们来帮它找找吧!仔细观察花园里的花坛,数一数它们都是几边形的。按照顺序依次从五边形走到十边形花坛,中间不能重复,请画出线路。

7、作业讲评。

活动反思:

通过此活动幼儿对图形有清晰概念,对不同的图形有了印象。能比较出它们之间的异同,不会把正方形和长方形看成是相同的图形。引导幼儿留心观察环境中的物体,发现图形在生活中的应用,从而增加学习的兴趣。

蒙氏数学多边形教案篇2

一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

?复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9, 求 的度数(打出投影).

?引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.

?讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1 已知:如图4-11,四边形abcd的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .

求 .

(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

(学生回答)

②若以 为边作四边形abcd.

提示画法:①画任意小于平角的 .

②在 的两边上截取 .

③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d点.

④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.

大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定.

③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的.形状改变了,这说明四边形没有稳定性.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据.

(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.

?总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积

八、布置作业

教材p128中4.

九、板书设计

十、随堂练习

教材p124中1、2

补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则 度.

(2)在四边形abcd中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度

(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.

蒙氏数学多边形教案篇3

教学目标

(1)使学生理解三角形、三角形的边、顶点、内角的概念;

(2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别;

(3)能正确地画出一个三角形的角平分线、中线和高;

(4)能用符号规范地表示一个三角形及六个元素;

(5)通过对三角形有关概念的教学,提高学生对概念的辨析能力和画图能力;

(6)让学生结合具体形象叙述定义,训练他们的语言表达能力,激发学生学习几何的兴趣。

教学重点

明确组成三角形的六个元素,正确理解三角形的“高”、“角平分线”和“中线”这三个概念的含义、联系和区别。

教学难点

三角形高的画法

教学用具

三角板、投影、微机

教学方法

启发探究法

教学过程

1、温故知新,揭示课题

引言之后,先让学生:

(1)试说出三角形以及三角形的边、顶点、角的概念

(2)如图1:试画出的平分线、bc边上的中线、bc边上的高

然后,在此基础上,揭示课题,提出思考题:三角形是由三条线段组成的,这里要强调“首尾顺次相接”为什么要加上这个条件?具备什么条件的线段才是三角形的角平分线、三角形的中线、三角形的高。

2、运用反例,揭示内涵

由上面分析,让学生判断辨别下列图2中哪一个是正确的?(对第三个图)直角三角形只有一条高对吗?

3、讨论归纳,深化定义

引导启发学生,归纳讨论探索得到的结果:

定义1三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。

强调:三角形的角平分线是一条线段,而角的平分线是一条射线。

定义2三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段。

强调:三角形中线是一条线段。

定义3三角形的高:从三角形的一个顶点向它对边画垂线,顶点和垂足间的线段。

强调:三角形的高是线段,而垂线是直线。

这一环节运用电教手段,利用<几何画板>动画的功能,增加直观性有利于学生理解掌握定义

4、符号表示,加深理解

通过符号的表述,使学生对三角形的角平分线、中线、高的理解得到加深和强化,在记忆上也趋于简化。

5、初步运用,反复辨析

练习的设计遵循由由浅入深、循序渐进的原则,三个题目,三个层次:

题1三角形的一条高是()

a.直线b.射线c.垂线.d.垂线段

题2画钝角三角形的高ae。

题3

先让学生思考练习,然后师生一起分析纠正,最后教师点拨小结。这环节运用电教手段,以增大教学容量和直观性,提高效率。

6、归纳总结,强化思想

这节课着重讲了三角形的角平分线、中线和高,在集会理解上述定义时,必须注意到两点:一是三条都是线段;二是钝角三角形与直角三角形的高的画法。

揭示了文字语言、图形语言、符号语言在几何中的作用,要求在学习时熟练三种语言的相互转化。

7、布置作业,题目是:

(1)书面作业p30#2,3p41#5(做在书上)

(2)交本作业p41#4

(3)思考题1:

思考题2:

探究活动

1、以3根火柴为边,可以组成一个三角形,用6根火柴为边最多可以组成几个三角形?9根火柴最多能组成几个三角形?

2、从三角形一个顶角引出的三角形角平分线、一条中线能否重合?此时这个三角形的形状如何?

答案:1.4、7;

2.能.三角形为等腰三角形.

蒙氏数学多边形教案篇4

【教学内容】

【教学目标】

1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.

2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.

3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.

【教学重点与教学难点】

1.重点:多边形的内角和公式

2.难点:多边形内角和的推导

3.关键:.多边形"分割"为三角形.

【教具准备】三角板、卡纸

【教学过程】

一、创设情景,揭示问题

1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

二、探索研究学会新知

1、回顾旧知,引出问题:

(1)三角形的内角和等于_________.外角和等于____________

(2)长方形的内角和等于_____,正方形的内角和等于__________.

2、探索四边形的内角和:

(1)学生思考,同学讨论交流.

(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。

(3)引导学生用"分割法"探索四边形的内角和:

方法一:连接一条对角线,分成2个三角形:

180°+180°=360°

从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.

180°×4-360°=360°

3、探索多边形内角和的问题,提出阶梯式的问题:

你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:

(1)一个八边形的内角和是_____________度

(2)一个多边形的内角和是720度,这个多边形是_____边形

(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和

三、点例透析

运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

四、应用训练强化理解

4、第83页练习1和2多边形内角和定理的应用

五、知识回放

课堂小结提问方式:本节课我们学习了什么?

1多边形内角和公式

2多边形内角和计算是通过转化为三角形

六、作业练习

1、书面作业:

2、课外练习:

蒙氏数学多边形教案篇5

课题

探索多边形内角和

教学目标

知识目标

1、探索多边形内角和定义、公式

2、正多边形定义

能力目标

1、发展学生的合情推理意识、主动探索的习惯

2、发展学生的说理能力和简单的推理意识及能力

德育目标

培养用多边形美花生活的意识

教学重点

多边形内角和公式的推导

学难点

多边形内角和公式的简单运用

教学方法

探索、讨论、启发、讲授

教学手段

利用学生剪纸、投影仪进行教学

教学过程:

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

二、多边形内角和公式:

1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

(1)量出每个内角度数然后相加为540°;

(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);

(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°—360°=540°(如图二);

(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°—180°=540°(如图三);

(5)六边形可怎样剪成三角形求内角和?n边形呢?

(6)总结规律:多边形内角和为(n—2)×180°(n≥3)。

3、议一议:

(1)过四边形一个顶点的对角线把四边形分成两个三角形;

(2)过五边形一个顶点的对角线把五边形分成( )个三角形;

(3)过六边形一个顶点的对角线把六边形分成( )个三角形。

(4)过n边形一个顶点的对角线把n边形分成( )个三角形;

三、正多边形定义:

1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

正多边形的边数

3

4

5

6

8

n

正多边形的`内角和

180°

360°

540°

720°

1080°

正多边形每个内角的度数

60°

90°

108°

120°

135°

四、小结:

主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

五、布置作业:

课本p110、习题4、10第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140,它是()边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。

3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。

4、一个多边形的每个内角都是140°,这个多边形是()边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。

6、下列角能成为一个多边形的内角和的是()

a、270°b、560°c、1800°d、1900°

思考题:如图(1),求∠a+∠b+∠c+∠d+∠e+∠f等于多少度?

如图(2),求∠a+∠b+∠c+∠d+∠e+∠f+∠g等于多少

蒙氏数学多边形教案篇6

一、教学任务分析

1、教学目标定位

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

二、教学内容分析

1、教材的地位与作用

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

三、教学诊断分析

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

蒙氏数学多边形教案6篇相关文章:

小班蒙氏教案参考8篇

幼儿园蒙氏阅读教案7篇

初中数学圆教案6篇

钓鱼数学教案6篇

幼儿数学比轻重教案6篇

三年级数学活动教案6篇

初中数学圆教案通用6篇

小班数学认识三角形教案6篇

人教版一年级数学教案6篇

幼儿园大班数学逛超市教案6篇

蒙氏数学多边形教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
111129