等差数列说课教案7篇

时间:
tddiction
分享
下载本文

合理的课堂布置和教学环境和良好的学习氛围都是依赖于一篇优质的教案的,教案能够帮助教师更好地组织学生的学习活动,提高学习的积极性和主动性,以下是好文笔小编精心为您推荐的等差数列说课教案7篇,供大家参考。

等差数列说课教案7篇

等差数列说课教案篇1

一、预习问题:

1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。

2、等差中项:若三个数 组成等差数列,那么a叫做 与 的 ,即 或 。

3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

4、等差数列的通项公式: 。

5、判断正误:

①1,2,3,4,5是等差数列; ( )

②1,1,2,3,4,5是等差数列; ( )

③数列6,4,2,0是公差为2的等差数列; ( )

④数列 是公差为 的等差数列; ( )

⑤数列 是等差数列; ( )

⑥若 ,则 成等差数列; ( )

⑦若 ,则数列 成等差数列; ( )

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )

⑨等差数列的公差是该数列中任何相邻两项的差。 ( )

6、思考:如何证明一个数列是等差数列。

二、实战操作:

例1、(1)求等差数列8,5,2,的第20项。

(2) 是不是等差数列 中的项?如果是,是第几项?

(3)已知数列 的公差 则

例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?

例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。

等差数列说课教案篇2

一、教材分析

1、教学目标:

a.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

b.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点

①等差数列的概念。

②等差数列的通项公式的。推导过程及应用。用不完全归纳法推导等差数列的通项公式。

二、教法分析

采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是

21,22,23,24,25,

2、某剧场前10排的座位数分别是:

38,40,42,44,46,48,50,52,54,56。

3.某长跑运动员7天里每天的训练量(单位:)是:

7500,8000,8500,9000,9500,10000,10500。

共同特点:

从第2项起,每一项与前一项的差都等于同一个常数。

(二) 新课探究

1、给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③公差可以是正数、负数,也可以是0。

2、推导等差数列的通项公式

若等差数列{an }的首项是 ,公差是d, 则据其定义可得:

- =d 即: = +d

– =d 即: = +d = +2d

– =d 即: = +d = +3d

进而归纳出等差数列的通项公式:

= +(n-1)d

此时指出:

这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

– =d

– =d

– =d

– =d

将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d

当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用

(三)应用举例

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 (1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

第二问实际上是求正整数解的问题,而关键是求出数列的通项公式

例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。

在前面例1的基础上将例2当作练习作为对通项公式的巩固

例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

(四)反馈练习

1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 (由学生总结这节课的收获)

1、等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式 = +(n-1) d会知三求??

(六) 布置作业

必做题:课本p114 习题3.2第2,6 题

选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

四、板书设计

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

教学目的:

1.明确等差数列的定义,掌握等差数列的通项公式。

2.会解决知道中的三个,求另外一个的问题。

教学重点:等差数列的概念,等差数列的通项公式。

教学难点:等差数列的性质

教学过程:

一、复习引入:(课件第一页)

二、讲解新课:

1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(课件第二页)

⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;

⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。

2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)

三、例题讲解

例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

例2 在等差数列 中,已知 , ,求 , ,

例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。

小结:

①这就是第二通项公式的变形,

②几何特征,直线的斜率

例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)

例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)

分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。

注:

①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,…

②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.

③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式

④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数。

四、练习:

1、(1)求等差数列3,7,11,……的第4项与第10项。

(2)求等差数列10,8,6,……的第20项。

(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。

(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由。

2、在等差数列{ }中,

(1)已知 =10, =19,求 与d;

五、课后作业:

习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 。 8. 9.

?教学目标】

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2、过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3、情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

?教学重点】

①等差数列的概念;

②等差数列的通项公式

?教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

?学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

?设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。)

三:举一反三,巩固定义

1、判定下列数列是否为等差数列?若是,指出公差d。

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题。

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。

(设计意图:强化学生对等差数列“等差”特征的理解和应用)。

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1、已知等差数列:8,5,2,…,求第200项?

2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an。

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况。

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。)

六:反馈练习:教材13页练习1

七:归纳总结:

1、一个定义:

等差数列的定义及定义表达式

2、一个公式:

等差数列的通项公式

3、二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

等差数列说课教案篇3

(一)教学目标

知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。

过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。

情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。

(二)教学重、难点

重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。

难点:概括通项公式推导过程中体现出的数学思想方法。

(三)学法与教学用具

学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。

教学用具:投影仪

(四)教学设想

[创设情景]

上节课我们学习了数列。在日常生活中,人口增长、贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。

[探索研究]

由学生观察分析并得出答案:

(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,

20xx年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。

水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,,13,,8,

我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率寸期).例如,按活期存入10 000元钱,年利率是%。那么按照单利,5年内各年末的本利和分别是:

时间年初本金(元)年末本利和(元)

第1年10 00010 072

第2年10 00010 144

第3年10 00010 216

第4年10 00010 288

第5年10 00010 360

各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。

思考:同学们观察一下上面的这四个数列:0,5,10,15,20, ①

48,53,58,63 ②

18,,13,,8, ③

10 072,10 144,10 216, 10 288,10 360 ④

看这些数列有什么共同特点呢?

(由学生讨论、分析)

引导学生观察相邻两项间的关系,得到:

对于数列①,从第2项起,每一项与前一项的差都等于 5 ;

对于数列②,从第2项起,每一项与前一项的差都等于 5 ;

对于数列③,从第2项起,每一项与前一项的差都等于 ;

对于数列④,从第2项起,每一项与前一项的差都等于 72 ;

由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。

[等差数列的概念]

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:

等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,,72。

提问:如果在

中间插入一个数a,使

,a,

成等差数列数列,那么a应满足什么条件?

由学生回答:因为a,a,b组成了一个等差数列,那么由定义可以知道:

a-a=b-a

所以就有

由三个数a,a,b组成的等差数列可以看成最简单的等差数列,这时,a叫做a与b的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。

如数列:1,3,5,7,9,11,13中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。

看来,

从而可得在一等差数列中,若m+n=p+q则

[等差数列的通项公式]

对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。

⑴、我们是通过研究数列

的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式。

由学生经过分析写出通项公式:

① 这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),由此可以猜想得到这个数列的通项公式是

② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+52),第4项是63(=48+53),由此可以猜想得到这个数列的通项公式是

③ 这个数列的第一项是18,第2项是(),第3项是13(),第4项是(),第5项是8(),第6项是()由此可以猜想得到这个数列的通项公式是

④ 这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+722),第4项是10288(=10072+723),第5项是10360(=10072+724),由此可以猜想得到这个数列的通项公式是

⑵、那么,如果任意给了一个等差数列的首项

和公差d,它的通项公式是什么呢?

引导学生根据等差数列的定义进行归纳:

(n-1)个等式

所以

思考:那么通项公式到底如何表达呢?

得出通项公式:由此我们可以猜想得出:以

为首项,d为公差的等差数列

的通项公式为:

也就是说,只要我们知道了等差数列的首项

和公差d,那么这个等差数列的通项

就可以表示出来了。

选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式:

(迭加法):

是等差数列,所以

两边分别相加得

等差数列说课教案篇4

一、等差数列

1、定义

注:“从第二项起”及

“同一常数”用红色粉笔标注

二、等差数列的通项公式

(一)例题与练习

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二)新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件; f

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1—an=d (n≥1) ;h4z+0"6vg

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1。 9 ,8,7,6,5,4,……;√ d=—1

2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

3。 0,0,0,0,0,0,……。; √ d=0

4。 1,2,3,2,3,4,……;×

5。 1,0,1,0,1,……×

其中第一个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

2、第二个重点部分为等差数列的通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,

则据其定义可得:

a2 — a1 =d 即: a2 =a1 +d

a3 – a2 =d 即: a3 =a2 +d = a1 +2d

a4 – a3 =d 即: a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:

an=a1+(n—1)d

此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:

a2 – a1 =d

a3 – a2 =d

a4 – a3 =d

……

an+1 – an=d

将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

当n=1时,(1)也成立,

所以对一切n∈n﹡,上面的公式都成立

因此它就是等差数列{an}的通项公式。

在迭加法的证明过程中,我采用启发式教学方法。

利用等差数列概念启发学生写出n—1个等式。

对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。

在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用

同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

(三)应用举例

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an

例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

在前面例1的基础上将例2当作练习作为对通项公式的巩固

例3 是一个实际建模问题

建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)

设置此题的目的:

1。加强同学们对应用题的综合分析能力,

2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;

3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

(四)反馈练习

1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

目的:对学生加强建模思想训练。

3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 (由学生总结这节课的收获)

1。等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2。等差数列的通项公式 an= a1+(n—1) d会知三求??

3.用“数学建模”思想方法解决实际问题

(六)布置作业

必做题:课本p114 习题3。2第2,6 题

选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

五、板书设计

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

教学目标

1、通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3、通过参与编题解题,激发学生学习的兴趣。

教学重点,难点

教学重点是通项公式的认识;

教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑。

教学方法

研探式。

教学过程()

一。复习提问

前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。

二。主体设计

通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。

1、方程思想的运用

(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第 项。

(2)已知等差数列 中,首项 , 则公差

(3)已知等差数列 中,公差 , 则首项

这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。

2、基本量方法的使用

(1)已知等差数列 中, ,求 的值。

(2)已知等差数列 中, , 求 。

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量。

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。

如:已知等差数列 中, …

由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列 中, 求 ; ; ; ;…。

类似的还有

(4)已知等差数列 中, 求 的值。

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3、研究等差数列的单调性,考察 随项数 的变化规律,着重考虑 的情况。 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果,这个结果与考察相邻两项的差所得结果是一致的,

4、研究项的符号

这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如

(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

(2)等差数列 从第 项起以后每项均为负数。

三。小结

1、 用方程思想认识等差数列通项公式;

2、 用函数思想解决等差数列问题。

等差数列说课教案篇5

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

等差数列说课教案篇6

教学准备

教学目标

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。——

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

(本题为开放题,没有的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

p129:1,2,3

思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的——,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

等差数列说课教案篇7

教学目标:

1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:

等差数列的概念及通项公式。

教学难点:

(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入

(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:

你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

(2)某剧场前10排的座位数分别是:

48、46、44、42、40、38、36、34、32、30

引导学生观察:数列①、②有何规律?

引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式

1.等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的.学习。

[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

1.3,5,7,…… √ d=2

2.9,6,3,0,-3,…… √ d=-3

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

2.等差数列通项公式

如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

将这(n-1)个等式左右两边分别相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

当n=1时,(Ⅰ)也成立,所以对一切n∈n﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

三.应用举例

例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

四.反馈练习

1.p293练习a组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

五.归纳小结提炼精华

(由学生总结这节课的收获)

1.等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2.等差数列的通项公式an= a1+(n-1) d会知三求??

六.课后作业运用巩固

必做题:课本p284习题a组第3,4,5题

等差数列说课教案7篇相关文章:

幼师说课实习心得5篇

磨课说课活动总结8篇

英语说课观摩心得体会6篇

说课比赛培训心得体会8篇

语文教研说课活动总结6篇

幼师说课实习心得精选8篇

语文教研说课活动总结参考8篇

说课的心得体会800字6篇

幼儿说课培训心得体会推荐8篇

中班说课发言稿范文8篇

等差数列说课教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
114941