教案的制定可以帮助教师明确教学目标,确保教学的针对性和有效性,教案的准备可以让我们更好地调整教学策略,提高教学效果,好文笔小编今天就为您带来了分数和小数的教案6篇,相信一定会对你有所帮助。
分数和小数的教案篇1
教学目标
1.能运用分数、小数的互化方法进行分数小数的互化。
2.培养学生概括能力。
3通过分数小数互化知识,渗透辩证法的观点即事物之间是有联系的。激发学生的学习兴趣。
教学重点分数、小数的互化方法。
教学难点理解什么样的分数能化成有限小数,什么样的分数不能化成有限小数。
自学预设
自学内容教材第97一98页的内容
指导方法
1、自学p97一98的例1、2
图学习你知道了什么信息?
2、你会互化吗?练习做一做。
尝试练习1.看图写出分数和小数。(投影出示)
小数________
分数________
2.填空:(小黑板出示)
0.3里面有()个十分之一,它表示()分之()。
0.17里面有()个百分之一,它表示()分之()。
0.007里面有()个千分之一,它表示()分之()。
教学过程
一、自学反馈
1.看图写出分数和小数。(投影出示)
小数________
分数________
2.填空:(小黑板出示)
0.3里面有()个十分之一,它表示()分之()。
0.17里面有()个百分之一,它表示()分之()。
0.007里面有()个千分之一,它表示()分之()。
二、探究新知
教师引入:小数表示的是十分之几、百分之几、千分之几……的数,实际上就是分母是10、100、1000……的分数的另一种形式,因此,小数可以直接写成分母是10、100、1000……的分数。
(一)教学把小数化成分数。
1.教学例1(1)出示0.9
①看到0.9,你知道什么?
(2)出示0.03
①看到0.03你知道什么?
(3)出示1.21
①引导学生知道,这个小数有整数部分,即为带小数,带小数化成的分数是带分数,带小数整数部分就是带分数的整数部分,小数部分是分数部分。
②议论1.21怎样用分数表示。
(4)出示0.405
①看到0.405你想到什么?
2.从上面的例题,你发现小数化分数有什么简便方法?
引导学生得出:小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数点去掉,小数作分子;化成分数后,能约分的要约分。
3.反馈练习
把小数化成分数
0.76.130.080.651.075
(1)迅速完成
(2)汇报结果,并说明怎么想的。
(二)教学把分数化成小数。
1.谈话引入:小数可以化成分数形式,分数也可以化成小数形式。
2.出示例2
(1)引导学生观察这几个分数的分母有什么特点?使学生明确:根据小数的意义,也可以把这些分母是10、100、1000的分数直接写成小数。
(2)观察3组数
(3)分组议论知道了什么?
(4)分组汇报结果,使学生知道:分
母是10、100、1000……的分数化成小数,去掉分母,看
分数中1后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点。
(三)教学例3。
1.教师引入:并不是所有分数的分母都是整十、整百、整千……,下面情况应怎样处理呢?
2.出示例3
(2)汇报思考结果:根据分数与除法的.关系,把分数转化成除法算式,然后计算就可以得到小数。
(3)按照同学们汇报方法完成例3其余几道题。(指名板演,其它学生在练习本上做。)
①说出思路。
②提示:除不尽的按要求保留三位小数。
(4)引导学生归纳:分母不是10、100、1000……的分数化成小数,要用分母去除分子,除不
尽的可以根据需要按四舍五入法保留几位小数。
(5)教师提示:这样得到的小数有两种情况,一种是有限小数,另一种是无限小数。
(6)引导学生思考:什么样分母的分数能化成有限小数,什么样分母的分数不能化成有限小数。
(7)教师提示:先把每个分数的分母分解质因数。
4=2×29=3×325=5×514=2×740=2×2×2×5
你发现什么规律了?可议论。
(8)启发学生明确:一个最简分数,如果分母中除了2和5以外,不含有其它的质数,这个
分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
(9)反馈练习:完成146页“做一做”
要求:口头判断,说明判断理由。
三、巩固发展
1.第1、2题生填在书中。
(1)填空力求准确。
(2)集体订正,并说说填空根据。
2.判断下列小数化成分数是否正确。
(1)判断并说明理由。
(2)将错的题改正。
3.练习三十三第4题
比赛形式:看谁连线既快又对。
4.练习三十三第5题。
分组竞赛:共分3组,每组两道题,看哪组为优胜组。
5.练习三十三第6题。
(1)学生独立完成
(2)集体订正
(3)看谁先记住结果。(2分钟)
(4)同桌互相检查,一个说分数,一个说小数。
四、全课
这节课我们学习了什么知识?(学生发言)
那就是说,小数、分数可以互相转化。(板书:分数和小数互化)这是分数、小数混合运算中首先要理解和掌握的问题,是以后继续学习分数、小数混合运算的基础。所以互化方法一定要牢记。
分数和小数的教案篇2
教学目标:
1.利用已有知识迁移、类推、发现百分数和小数互化的规律和方法。
2.理解、掌握百分数和小数互化的方法,并能熟练运用,进一步体会数学之间的内在联系,增强思维的深刻性。
教学重难点:
探索百分数与小数的互化方法,能正确、熟练地进行百分数与小数数的互化。
教学准备:
ppt,练习本
课型:
新授课
教学过程:
一、交流前置作业
1.请学生板演知识准备第1题,写出详细的计算过程。
2.开火车核对知识准备第2题。
二、新授(前置作业自主探究)
1.出示例2,集体交流两个问题。
(1)谁是谁的1.15倍?(王红完成的是指定个数的1.15倍)
(2)谁占谁的110%?(李芳完成的是指定个数的110%)
(3)你是怎样比较的呢?
教师根据学生的回答明确:1.15倍是指定个数的1.15倍,110%也是指定个数的110%,所以要比较两位同学完成仰卧起坐个数的多少,就是要比较1.15和110%这两个数的大小。
三、讨论比较方法
1.师:你有什么好办法可以比较出这两个数的大小吗?你能把自己的想法展示在黑板上吗?鼓励学生板演,并展示多种比较方法,对正确的方法给予肯定。
2.根据学生的方法归纳总结
要想比较分数和百分数的大小,要么把它们都化成分数,要么把它们都化成百分数。
(1)可以把1.15改写成百分数,与110%比较。
(2)也可以把110%改写成小数,与1.15比较。
3.体会互化方法,规范书写。
(1)师问:怎样将1.15改写成百分数呢? 师板书:因为,1.15=115/100=115%,所以1.15>110% 四、归纳改写方法
1.完成试一试
师:1、2两组完成0.3的改写,3、4两组完成0.248的改写,请学生上黑板板演,集体核对,表扬鼓励。
2.呈现去掉中间环节的几个等式
0.3=30%
0.248=24.8%
1.15=115%
问:把百分号前面的数与原来的小数比较,你有什么发现?
学生全班交流自己的发现,教师帮助归纳完善:左边小数的小数点都向右移动两位就成了百分号前面的数。比如将0.248的小数点向右移动两位成了24.8,就是24.8%百分号前面的数。
师:你能根据这一发现直接将小数化成百分数吗?
学生尝试练一练第1题,请学生板演,并讲解自己的'改写方法,重复规律。
2.师:反过来看,怎样将百分数直接改写成小数呢?
生总结方法,教师帮助归纳完善。
3.尝试练一练的第2小题,请生口答,并说出自己的方法。
4.师:看来百分数和小数之间的互化有一定的规律,谁能说说其中的规律呢?其他同学补充。
总结:将百分数改写成小数,可以将百分号前面的数的小数点向左移动两位,去掉百分号。将小数改写成百分数,可以将小数的小数点向右移动两位,添上百分号。
五、巩固练习
1.完成练习十四第13题。
教师巡视并批改。
2.课堂练习。
在作业本上完成练习十四弟14题和15题。
六、全课总结
今天这节课你掌握了什么本领?
板书设计:
百分数与小数的互化
怎样比较1.15和110%的大小呢?
(1)1.15=115/100=115%,所以1.15>110%
(2)110%=110/100=1.1,所以1.15>110%
0.3=30%
0.248=24.8% 比较:怎样把小数直接改写成百分数?怎样把
1.15=115% 百分数直接改写成小数?
1.1=110%
分数和小数的教案篇3
教学目标
1 .通过教学,使学生理解和掌握分数和小数互化的方法,能熟练、正确进行分数和小数的互化。
2 .培养学生综合应用所学数学知识解决问题的能力。 3 .培养学生应用数学知识解决实际问题的意识。
重点难点
理解和掌握分数和小数互化的方法。
教具准备
投影。
教学过程
(一)新授
出示例2 。把0.7,,0.25,这6个数按从小到大的顺序排列起来。
( 1 )提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办?
学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数。
提问:哪种方法比较简便?为什么?(化成小数比较简便)
( 2 )让学生尝试把化成小数。
老师提问:分母不是10,100,1000的分数,该怎样化成小数呢?
学生在小组内讨论并试着解决,再请代表汇报交流。
可能出现两种方法:
①把的分子和分母同时乘上相同的数,转化为分母是10,100,1000的分数,再改写成小数。 = = =0.28
①利用分数与除法的`关系,用分子除以分母得出小数。
=7÷25=0.28
(1)在让学生将化成小数。
学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000作分母。用分子除以分母时,出现了除不尽。)指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。
=11÷45≈0.24
( 4 )现在,你能把这6个数按从小到大的顺序排列了吗?学生独立完成。
( 5 )小结:分数化成小数时有几种方法?
引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000时,直接写成小数。②分母是10,100,1000的因数时,可化成分母是10,100,1000的分数,再写成小数。
( 6 )完成教材第98页的“做一做”。
先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母
分数和小数的教案篇4
一、铺垫练习
1.你会把下面的数分类吗?
0.9 0.82 0.3 0.521
2.指名学生说说上面的数的计数单位各是什么?
学生回答后教师小结;一位小数的计数单位是十分之一,两位小数的计数单位是百分之一------
3.比较下面数的大小。
0.16和0.26 0.3和0.24 4/5和2/5 2/5和2/10
学生口答,说说怎样比较的。
二、探索新知
1.教学例9。
(1)出示例9,仔细观察,说说图上提供了哪些数学信息。
(2)小组讨论:怎样比较0.5米和3/4米的大小?
学生讨论后汇报, 教师适当板书:3/4=3÷4=0.75
师:同学们,我们这样把分数化成小数的根据是什么?怎样把分数化成小数?
2.独立尝试。
(1)学生尝试用刚才学到的方法来把分数化成小数,同时指名板演,然后共同评议。
(2)小结:我们根据分数与除法的关系可以用分数的分子除以分母的方法把分数化成小数,注意计算时要根据题目要求,除不尽的保留一定的小数位数。
3.学习例10。
师:同学们,怎样才能把小数化成分数呢?
(1)谈话:仔细观察这几个小数,分别是几位小数?想一想,它们分别表示什么?怎样把它们化成分数?
(2)学生独立尝试把小数化成分数。
(3)师:谁愿意给大家来说一说小数化成分数的方法?
三、巩固练习
1.独立完成“练一练”。
学生独立完成,指名学生交流,说说怎样比较题中每组数的大小的。
2.完成练习九第7题。
学生各自在书上填空,然后请学生口答。
3.练习九第10题。
4.练习九第11题。
提醒学生理解“谁做得快一些?”所表示的实际意义。
5.思考题。
学生先独立完成,再全班学生汇报交流。
四、全课总结
1.这节课你有那些收获?
2.你还有不明白的问题吗?
分数和小数的教案篇5
课时课题
分母不是10、100、1000......的分数化成小数
课时
2
教学目标
(1)使学掌握任意分数化成小数的方法,并能正确到把分数化成小数。
(2)培养学生合作意识。
教学重点、难点
重点、难点:任意分数化成小数的方法。
教具、学具准备
教学过程
备 注
一、准备练习
把下面的分数化成小数。
9/101又131000
二、导入新课
1、出示:1/2、2/5能不能化成小数?怎样化?
2、揭题:分母不是10、100、1000......的分数化成小数。
三、教学新课
1、引导学生尝试探索:怎样把1/2、2/5化成小数呢?
(1)先独立尝试,再分组讨论,说说自己的想法。
(2)各组汇报结果,说说你是怎样化的?并说出化的依据是什么?
(3)根据学生回答,教师板书。
(4)根据分数与除法的关系:
1/2=1÷2=0.52/5=2÷5=0.4
(5)根据分数的基本性质:
1/2=1×5/2×5=5/10=0.52/5=2÷2/5÷2=4/10=0.4
2、巩固练习
(1)师:同学们通过自己的探索,得出了分数化成小数的方法,真不简单,请同学们呢把下面的分数化成小数。(用你喜欢的方法)
7/20、5/8、11/40、2又4/5、1又9/25、3又1/4
(2)请三位同学做在投影片上,其余做在作业本上,教师巡视,然后反馈、讲评。
(3)师指出:像2又4/5这样的带分数化成小数时,只要把带分数的分数部分化成小数,再与整数部分合起来书写就可以了,不必把带分数先化成假分数再化成小数。
3、教学例4。
(1)师:刚才同学们用了两种不同的方法都能把分数化成小数,现在老师这里还有两个分数要化小数,你们想一想,可以用什么办法?
教学过程
备 注
(2)出示:把2/7、3/22化成小数。(保留三位小数)
(3)学生先独立尝试,再自学课本例4。
(4)提问:为什么前面用“=”符号,后面用“≈”符号呢?想一想,能不能用分数的基本性质来化呢?
4、巩固练习。
把下面的分数化成小数。(除不尽的保留三位小数)
5/7、2/3、7/12、1又5/9、2又4/15、4又11/18
5、小结。
(1)谁能说一说分数化小数的方法?
分数化成小数,一般要用分子除以分母。
(2)谁能说一说这里为什么要用“一般”两个字?
四、课堂小结
师:今天这节可同学们经过自己的探索,得出了分母不是10、100、1000.........的`分数化小数的方法,这样我们就学会了任意分数化小数的方法,谁能总结一下。
五、作业《作业本》
根据分数与除法的关系,可以用分子除以分母的方法把分数化成小数。教学时要提醒学生注意“=”和“≈”的不同使用。
分数和小数的教案篇6
教学目标
1、知识与技能
掌握分数和小数的互化方法,并能熟练地把小数化成分数,把分数化成小数。
2、过程与方法
在学习过程中,感悟转化的数学方法,培养迁移类推的能力。
情感态度与价值观
体验学习数学的乐趣,养成自主学习的习惯。
教学过程
一、探索交流,解决问题
1、出示例1 把一条3米长的 绳子平均分成10段,每段长多少米?平均分成5段呢?
(1)学生先独立计算,然后用小数表示计算结果和用分数表示计算结果。
3÷10=0.3(米) 3÷5=0.6(米) 3÷10=33(米) 3÷5=(米) 105讨论:能否把小数直接写成分数呢?如果能,怎么写?分组讨论,再试着完成课本第的“试一试”。
(2)小结
小数化成分数时,先把小数写成分数,原来有几位小数,就在后面写几个0作分母,原来的小数去掉小数点作分子。注意能约分的要约分。
2、出示例2。把0.7,来。
(1)提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办? 学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数,再通分。提问:哪种方法比较简便?为什么?
(2)大家先来看看,两种方法:
方法一:把943711,0.25,这6个数按从小到大的顺序排列起101002545943、写成小数分别是多少? 101007的分子和分母同时乘上相同的数,转化为分母是10,100,1000…的分25数,再改写成小数。
287==0.28 25100
方法二:利用分数与除法的关系,用分子除以分母得出小数。
7=7÷25=0.28 25(3)在让学生将11化成小数。 45学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000……作分母。用分子除以分母时,出现了除不尽。)
指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。
11=11÷45≈0.24 45
(4)现在,你能把这6个数按从小到大的顺序排列了吗? 学生独立完成。
(5)小结:分数化成小数时有几种方法?
引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000……时,直接写成小数。②分母是10,100,1000……的因数时,可化成分母是10,100,1000……的分数,再写成小数。
(6)完成给出的练习。
先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母是10,100,1000……的分数,再写成小数。哪几个分数只能用一般方法。然后独立完成,选择自己喜欢的方法,把这些分数化成小数。
二、巩固应用,内化提高
1、 分别用小数和分数表示下面每个图中的涂色部分。
2、李阿姨平均每秒打0.9个字,王叔叔一分钟打50个字,谁打字快些?
5≈0.83 0.83<0.9 6答:李阿姨打字快。
3、小林从学校回家要花25分钟,小凡回家要花相同,谁家离学校远些?
1小时,如果他们两个人的行走速度451325÷60=12412答:距离学校远的是小林家。
4、你知道什么样的最简分数能化成有限小数吗? 你想了解这个规律吗? 其实,只要把分数的分母分解质因数,如果分母中除了 2 和 5 以外,不含有其他质因数,这个分数就能化成有限小数。例如, 的分母 20 = 2×2×5,它就能化成有限小数。如果分母中含有 2 和5 以外的质因数,这个分数就不能化成有限小数。例如, 的'分母 30 = 2×3×5,它就不能化成有限小数。
三、回顾整理,反思提升
本节课我们学习了分数和小数互化的方法。小数化成分数时,可以直接把小数转化成分母是10、100、1000……的分数,注意能约分的要约分。而分数化小数时,一般情况下是用分子÷分母,除不尽的按要求取近似值;如果分数的分母是10、100、1000……,可以直接化成小数;如果分母是10、100、1000的因数,可以转化成分母是10、100、1000的分数,再改写成小数。因此,在做分数化成小数的题目时,要认真观察数的特点,灵活选择方法,使得计算又对、又快。
分数和小数的教案6篇相关文章: