通过教案的充分准备,我们可以思考好教学策略和方法,使课堂更加生动有趣,激发学生的学习兴趣,教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,好文笔小编今天就为您带来了勾股定理三教案7篇,相信一定会对你有所帮助。
勾股定理三教案篇1
一、创设问属情境,引入新课
活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.
师生行为学生分组讨论,交流总结;教师引导学生回忆.
本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.
生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.
师:那么,一个三角形满足什么条件,才能是直角三角形呢?
生:有一个内角是90°,那么这个三角形就为直角三角形.
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.
师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?
二、讲授新课
活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.
画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.
设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.
师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.
生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即ac=3;同理bc=4,ab=5.因为32+42=52.我们围成的三角形是直角三角形.
生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.
再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.
是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
活动3下面的三组数分别是一个三角形的三边长?
勾股定理三教案篇2
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(p83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;
⑷因为242+182=302,pq2+pr2=qr2,根据勾股定理的逆定理,知∠qpr=90°;
⑸∠prs=∠qpr—∠qps=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
勾股定理三教案篇3
课题:
勾股定理
课型:
新授课
课时安排:
1课时
教学目的:
一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题
教学难点:
用面积法方法证明勾股定理
课前准备:
多媒体ppt,相关图片
教学过程:
(一)情境导入
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2、多媒体课件演示flash小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的'底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
(三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。
(四)小结
1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。
2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?
(五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
勾股定理三教案篇4
教学目标
1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。
3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。
教学重点
了解勾股定理的由来,并能用它来解决一些简单的问题。
教学难点
勾股定理的探究以及推导过程。
教学过程
一、创设问题情景、导入新课
首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示课件观察后回答:
1、观察图1—2,正方形a中有_______个小方格,即a的面积为______个单位。
正方形b中有_______个小方格,即b的面积为______个单位。
正方形c中有_______个小方格,即c的面积为______个单位。
2、你是怎样得出上面的结果的?
3、在学生交流回答的基础上教师进一步设问:图1—2中,a,b,c面积之间有什么关系?学生交流后得到结论:a+b=c。
二、层层深入、探究新知
1、做一做
出示投影3(书中p3图1—3)
提问:(1)图1—3中,a,b,c之间有什么关系?(2)从图1—2,1—3中你发现什么?
学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。
2、议一议
图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?
(1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
(2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?
3、想一想
我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?
三、巩固练习。
1、在图1—1的问题中,折断之前旗杆有多高?
2、错例辨析:△abc的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足=25即:c=5辨析:
(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形abc并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△abc是直角三角形,第三边c也不一定是满足,题目中并未交待c是斜边。
综上所述这个题目条件不足,第三边无法求得
四、课堂小结
鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。
五、布置作业
以上就是差异网为大家整理的10篇《《勾股定理》教案》,能够给予您一定的参考与启发,是差异网的价值所在。
勾股定理三教案篇5
一、教学目标
(一)教学知识点
1.掌握勾股定理,了解利用拼图验证勾股定理的方法.
2.运用勾股解决一些实际问题.
(二)能力训练要求
1.学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.
2.在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识.
(三)情感与价值观要求
利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献.借助对学生进行爱国主义.并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣.
二.教学重、难点
重点:勾股定理的证明及其应用.
难点:勾股定理的证明.
三.教学方法
教师引导和学生自主探索相结合的方法.
在用拼图的方法验证勾股定理的过程中.教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题.
四.教具准备
1.每个学生准备一张硬纸板;
2.投影片三张:
第一张:问题串(记作1.1.2 a);
第二张:议一议(记作1.1.2 b);
第三张:例题(记作1.1.2 c).
五.教学过程
Ⅰ.创设问题情景,引入新课
[师]我们曾学习过整式的运算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?
[生]利用多项式乘以多项式的法则从公式的左边就可以推出右边.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.
[生]还可以用拼图的方法来推出.例如:(a+b)2=a2+2ab+b2.我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2.所以(a+b)2=a2+2ab+b2.
勾股定理三教案篇6
学习目标
1、通过拼图,用面积的方法说明勾股定理的正确性.
2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
重点难点
或学习建议学习重点:用面积的方法说明勾股定理的正确.
学习难点:勾股定理的应用.
学习过程教师
二次备课栏
自学准备与知识导学:
这是1955年希腊为纪念一位数学家曾经发行的邮票。
邮票上的图案是根据一个著名的数学定理设计的。
学习交流与问题研讨:
1、探索
问题:分别以图中的直角三角形三边为边向三角形外
作正方形,小方格的面积看做1,求这三个正方形的面积?
s正方形bced=s正方形acfg=s正方形abhi=
发现:
2、实验
在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。
请完成下表:
s正方形bceds正方形acfgs正方形abhis正方形bced、s正方形acfg、s正方形abhi的关系
112
145
41620
91625
发现:
如何用直角三角形的三边长来表示这个结论?
这个结论就是我们今天要学习的勾股定理:
如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的`直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾
练习检测与拓展延伸:
练习1、求下列直角三角形中未知边的长
练习2、下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)
例1、如图,在四边形中,∠,∠,,求.
检测:
1、在rt△abc中,∠c=90°(1)若a=5,b=12,则c=________;
(2)b=8,c=17,则s△abc=________。
2、在rt△abc中,∠c=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()
a、5、4、3、;b、13、12、5;c、10、8、6;d、26、24、10
3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()
a.12cmb.10cmc.8cmd.6cm
4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)
5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?
课后反思或经验总结:
1、什么叫勾股定理;
2、什么样的三角形的三边满足勾股定理;
3、用勾股定理解决一些实际问题。
勾股定理三教案篇7
教学目标
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题
过程与方法:
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
情感态度价值观:
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
教学过程
1、创设情境
问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
2、探究勾股定理
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界
问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?
师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
勾股定理三教案7篇相关文章: